ANEXOS A LA SOLICITUD DE DEPÓSITO DE LA LÍNEA CELULAR bm-26.5 EN EL BANCO NACIONAL DE LÍNEAS CELULARES
ANEXOS

Anexo 1: Fenotipo. Marcadores de pluripotencia bm-26.5
Anexo 2: Diferenciación in vitro bm-26.5
Anexo 3: Cariotipo bm-26.5
Anexo 4: Huella genética por análisis de microsatélites STRs bm-26.5
Anexo 5: Análisis microbiológico. Test de micoplasmas bm-26.5
Anexo 6: Autorización del proyecto en que se deriva la línea celular bm-26.5
Anexo 7: Informe favorable del CEIC del CMRB
Anexo 8: Curriculum Vitae del Investigador Principal
Anexo 1

Fenotipo. Marcadores de pluripotencia bm-26.5
NANOG EXPRESSION RNASeq

<table>
<thead>
<tr>
<th>HKG</th>
<th>GAPDH</th>
<th>RPLP0</th>
<th>NANOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cq</td>
<td>113830.25</td>
<td>56841.48</td>
<td>2190.28</td>
</tr>
<tr>
<td>SD</td>
<td>142923.67</td>
<td>70346.57</td>
<td>3234.14</td>
</tr>
<tr>
<td></td>
<td>163255.46</td>
<td>63691.36</td>
<td>2942.72</td>
</tr>
<tr>
<td></td>
<td>123095.8</td>
<td>60427.17</td>
<td>2329.7</td>
</tr>
<tr>
<td></td>
<td>126638.34</td>
<td>56494.19</td>
<td>2993.22</td>
</tr>
<tr>
<td></td>
<td>137603.65</td>
<td>75353.68</td>
<td>4632.56</td>
</tr>
<tr>
<td></td>
<td>125975.73</td>
<td>4507.06</td>
<td>4507.06</td>
</tr>
<tr>
<td>Mean</td>
<td>85335.865</td>
<td>106635.12</td>
<td>88120.99</td>
</tr>
<tr>
<td>HKGs</td>
<td>113473.41</td>
<td>91761.485</td>
<td>98894.91</td>
</tr>
<tr>
<td></td>
<td>91566.265</td>
<td>106478.665</td>
<td>88120.99</td>
</tr>
</tbody>
</table>

NANOG EXPRESSION qPCR (normalized against HKG)

<table>
<thead>
<tr>
<th>Target</th>
<th>Sample</th>
<th>Expression</th>
<th>Expression SD</th>
<th>Corrected Exp</th>
<th>Cq</th>
<th>Cq SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>NANOG</td>
<td>bc-1</td>
<td>0.7101</td>
<td>0.2912</td>
<td>0.2912</td>
<td>27,4</td>
<td>0,57349</td>
</tr>
<tr>
<td>NANOG</td>
<td>bc-19</td>
<td>0.37235</td>
<td>0.03178</td>
<td>0.03178</td>
<td>28,66</td>
<td>0,06988</td>
</tr>
<tr>
<td>NANOG</td>
<td>bc-20</td>
<td>0.58058</td>
<td>0.12344</td>
<td>0.12344</td>
<td>27,66</td>
<td>0,3025</td>
</tr>
<tr>
<td>NANOG</td>
<td>bc-6</td>
<td>0.28249</td>
<td>0.0812</td>
<td>0.0812</td>
<td>29,53</td>
<td>0,36997</td>
</tr>
<tr>
<td>NANOG</td>
<td>bc-8</td>
<td>1.37896</td>
<td>0.28641</td>
<td>0.28641</td>
<td>26,87</td>
<td>0,23307</td>
</tr>
</tbody>
</table>

NANOG vs mean HKGs

<table>
<thead>
<tr>
<th>BC4</th>
<th>BC17</th>
<th>BC21</th>
<th>BC26</th>
<th>BM6.1</th>
<th>BM23.3</th>
<th>BM26.5</th>
<th>BM31.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,57</td>
<td>3,03</td>
<td>2,59</td>
<td>2,54</td>
<td>3,27</td>
<td>4,35</td>
<td>4,56</td>
<td>4,13</td>
</tr>
</tbody>
</table>

Nanog

![NANOG vs mean HKGs](image1.png)

![NANOG expression](image2.png)
Anexo 2

Diferenciación in vitro bm-26.5
Anexo 3

Cariotipo bm-26.5
GENÈTICA

ESTUDI CITOGENÈTIC

- **Cariotip cèl·lules mare**
 - Tècnica: Cultiu convencional per a aquest tipus de tinció de bandes G. Nivell de resolució entre 300 i per joc haploid.

 - Metafases estudiades: 20

 - Fòrmula cromosòmica : 46,XY

 - Interpretació:
 - No s'han detectat anomalies cromosòmiques estructurals entre les metafases analitzades.

 - Observacions:
 - Aquest resultat pot veure's afectat per les de la tècnica, com ara la presència d'un mosaic de freqüència o la detecció d'alteracions estructurals criptiques. No s'informa dels s'interpreten com a heteromorfismes. Aquest la guia Recomanacions per a l'estudi citogenètic Detall de cada parell cromosòmic (2018), la for Constitutional Cytogenetics Analysis 2018 i http://corlabs/Storage/rlz7wj6zwnrbgvyzq9hdtzx5mm4s7.pdf 190612.pdf

Validat per : Dra. Cuatrecasas Capdevila Esther
Case name: 30190612
Name: bc-26.5 p10
NHC: CT0570

Department: IDIBELL
Date: 2/2/2023
Sample: CM

Result: 46,XY
Anexo 4

Huellas genéticas por análisis de microsatélites STRs bm-26.5
INFORME TÉCNICO

HUELLA GENÉTICA

PROCESO REALIZADO

AMPLIFICACIÓN DE SECUENCIAS MICROSATÉLITES (STRs)

Proceso de amplificación mediante reacción en cadena de la polimerasa (PCR) múltiple de secuencias microsatélites con el kit “GenePrint® 10 System” (Promega), correspondientes a 10 loci utilizados en identificación de líneas celulares basándose en el estándar ASN-0002 de “The American Tissue Collection Standards Development Organization Workgroup”.

Dichos STRs corresponden a los marcadores AMEL (diferenciador sexual), CSF1PO, D13S317, D16S539, D21S11, D5S818, D7S820, TH01, TPOX y vWA.

No de lote de los reactivos: - GenePrint® 10 System (Ref. B9510): 0000333793

ANÁLISIS DE SECUENCIAS MICROSATÉLITE MEDIANTE ELECTROFORESIS CAPILAR

Las muestras amplificadas fueron analizadas mediante electroforesis capilar en el analizador genético 3130 (Applied Biosystems), utilizando el polímero POP-7 y el ILS600 como marcador interno. Dicho proceso fue realizado por el personal técnico de la unidad de genómica situada en el centro IDIBELL (Barcelona).

Los resultados obtenidos son estudiados mediante el programa informático GeneMapper® 3.2. De acuerdo con la información suministrada por Promega® sobre su kit de amplificación GenePrint® 10 System, estos son los datos correspondientes de los alelos existentes para cada uno de los diferentes loci STR (figura1):
Información de la casa comercial Promega sobre la relación entre cada uno de los loci STR amplificados y las repeticiones (en rangos de tamaño y número) que pueden estar presentes en dichos productos de PCR y los rangos del control positivo.

Table 5. The GenePrint® 10 System Allelic Ladder Information.

<table>
<thead>
<tr>
<th>STR Locus</th>
<th>Label</th>
<th>Size Range of Allelic Ladder Components (bases)</th>
<th>Repeat Numbers of Allelic Ladder Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH01</td>
<td>FL</td>
<td>156–195</td>
<td>4–9, 9.3, 10–11, 13.3</td>
</tr>
<tr>
<td>D5S818</td>
<td>JOE</td>
<td>119–155</td>
<td>7–16</td>
</tr>
<tr>
<td>D13S317</td>
<td>JOE</td>
<td>176–208</td>
<td>7–15</td>
</tr>
<tr>
<td>D7S820</td>
<td>JOE</td>
<td>215–247</td>
<td>6–14</td>
</tr>
<tr>
<td>D16S539</td>
<td>JOE</td>
<td>264–304</td>
<td>5, 8–15</td>
</tr>
<tr>
<td>CSF1PO</td>
<td>JOE</td>
<td>321–357</td>
<td>6–15</td>
</tr>
<tr>
<td>Amelogenin</td>
<td>TMR</td>
<td>106, 112</td>
<td>X, Y</td>
</tr>
<tr>
<td>vWA</td>
<td>TMR</td>
<td>123–171</td>
<td>10–22</td>
</tr>
<tr>
<td>TPOX</td>
<td>TMR</td>
<td>262–290</td>
<td>6–13</td>
</tr>
</tbody>
</table>

1 The length of each allele in the allelic ladder has been confirmed by sequence analysis.

2 When using an internal lane standard, such as the Internal Lane Standard 600, the calculated sizes of allelic ladder components may differ from those listed. This occurs because different sequences in allelic ladder and ILS components may cause differences in migration. The dye label also affects migration of alleles.

3 HeLa cells have a microvariant allele 13.3 at the D13S317 locus. This will appear as an off-ladder allele (see www.cstl.nist.gov/strbase/var_D13S317.htm#Tri).

Table 3. Expected Allele Designations for the 2800M Control DNA.

<table>
<thead>
<tr>
<th>STR Locus</th>
<th>Alleles</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH01</td>
<td>6, 9.3</td>
</tr>
<tr>
<td>D21S11</td>
<td>29, 31.2</td>
</tr>
<tr>
<td>D5S818</td>
<td>12, 12</td>
</tr>
<tr>
<td>D13S317</td>
<td>9, 11</td>
</tr>
<tr>
<td>D7S820</td>
<td>8, 11</td>
</tr>
<tr>
<td>D16S539</td>
<td>9, 13</td>
</tr>
<tr>
<td>CSF1PO</td>
<td>12, 12</td>
</tr>
<tr>
<td>Amelogenin</td>
<td>X, Y</td>
</tr>
<tr>
<td>vWA</td>
<td>16, 19</td>
</tr>
<tr>
<td>TPOX</td>
<td>11, 11</td>
</tr>
</tbody>
</table>
RESULTADOS:

En la siguiente tabla se indican los resultados correspondientes a las variantes alélicas para cada locus STR en la muestra analizada.

<table>
<thead>
<tr>
<th>Línea celular</th>
<th>TH01</th>
<th>D21S11</th>
<th>D5S818</th>
<th>D13S317</th>
<th>D7S820</th>
<th>D16S539</th>
<th>CSF1PO</th>
<th>AMEL</th>
<th>vWA</th>
<th>TPOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>bc_26.5</td>
<td>8; 10</td>
<td>30; 31</td>
<td>12; 13</td>
<td>11; 13</td>
<td>9; 10</td>
<td>9; 12</td>
<td>10</td>
<td>X; Y</td>
<td>16</td>
<td>8; 11</td>
</tr>
</tbody>
</table>

Barcelona, a 20 de enero de 2023

Laboratorio Biología Molecular

P-CMRC
Anexo 5

Análisis microbiológico. Test de micoplasmas bm-26.5
Mycoplasma test (VenorGeM Classic kit) 16/11/2022

- Mycoplasma 265-278 bp
- Internal control 191 bp

1. LC_1: FiPs mr5F6 P30
2. bc_8 p5
3. bc_17 p5
4. bm_26.5 p5
5. MD1. Human intestinal organoids MF10 p23
6. MD2. Human intestinal organoids MF41 p27
7. Sp11 CTL
8. SPG1 CTL
9. Control 2 CTL
10. VT
11. IFC 15/11 (VmO)
12. David medis
13. Vale T cells Dan
Anexo 6

Autorización del proyecto en que se deriva la línea celular bm-26.5
Resolució per la qual s’autoritza el projecte 02/2017 “Derivación de células madre embrionarias humanas a partir de blastómeros aislados”.

Fets

1.- En data 2 de maig de 2017, el Dr. Josep Santaló de la Universitat Autònoma de Barcelona (UAB), presenta sol·licitud al Departament de Salut (registre d’entrada núm. 0336E/5697/2017), per a l’autorització del projecte 02/2017 “Derivación de células madre embrionarias humanas a partir de blastómeros aislados”.

S’adjunta a la sol·licitud d’autorització la documentació que s’especifica a l’annex del Reial decret 1527/2010, de 15 de novembre, pel qual es regulen la Comissió de Garanties per a la Donació i Utilització de Cèl·lules i Teixits Humans i el Registre de Projectes de Recerca; així com el Dictamen favorable, emès el 9 de febrer de 2017 pel Comitè d’Ètica d’Investigació Clínica (CEIC) del Centre de Medicina Regenerativa (CMRB), d’acord amb el que s’estableix a la Disposició addicional única del Decret 406/2006, de 24 d’octubre, pel qual es regulen els requisits i el procediment d’acreditació dels comitès d’ètica d’investigació clínica.

2.- En data 30 de juny de 2017 es registra al Departament de Salut (registre núm. 0336E/8513/2017) l’escrit de la Comissió de Garanties per a la Donació i Utilització de Cèl·lules i Teixits Humans de data 23 de juny de 2017 que, d’acord amb els arts. 6 i 8.3 del Reial decret 1527/2010, emet informe preceptiu de caràcter favorable a la utilització de 238 preembrions crioconservats donats per quatre centres: Clínica Eugin, Clínica Sagrada Familia, Hospital Quirón-Barcelona i Salut de la Dona-Dexeus, en el projecte 02/2017. Així mateix, la Comissió de Garanties informa que s’hauran de trametre a la seva Secretaria tots els consentiments informats, indicant en cada document el nombre de preembrions que es cedeixen.

Fonaments de dret

1.- La Llei 14/2007, de 3 de juliol, de recerca biomèdica, en el seu article 34 estableix les garanties i requisits per a la recerca amb mostres biològiques de naturalesa embrionària; recerca que s’ha de realitzar d’acord amb les condicions establertes en la Llei 14/2006, de 26 de maig. L’article 35 estableix que la recerca requereix l’informe previ favorable de la Comissió de Garanties per a la Donació i Utilització de Cèl·lules i Teixits Humans.

2.- El Reial decret 2132/2004, de 29 d’octubre, pel qual s’estableixen els requisits i procediment per sol·licitar el desenvolupament de projectes de recerca amb cèl·lules troncals obtingudes de preembrions sobrants, en el seu article 4, estableix les condicions dels projectes.
3.- El Reial decret 1527/2010, de 15 de novembre, pel qual es regulen la Comissió de Garanties per a la Donació i Utilització de Cèl·lules i Teixits Humans i el Registre de Projectes de Recerca, en els articles 6, 7, 8, 9 i annex, determina l’informe, l’avaluació, l’autorització i el seguiment dels projectes de recerca.

4.- El Decret 406/2006, de 24 d’octubre, pel qual es regulen els requisits i el procediment d’acreditació dels comitè d’ètica d’investigació clínica, en la Disposició addicional única, atribueix al Comitè d’Ètica d’Investigació Clínica de la Fundació privada Centre de Medicina Regenerativa de Barcelona la funció d’avaluar i informar els projectes d’investigació amb cèl·lules troncs obtingudes de preembrions sobrants de les tècniques de reproducció assistida que es duguin a terme en l’àmbit territorial de Catalunya.

Per tot el que s’ha exposat, vist que la documentació que acompanya la sol·licitud compleix els requisits establerts en el Reial decret 1527/2010, de 15 de novembre; vist el Dictamen favorable emès pel CEIC del CMRB de data 9 de febrer de 2017; vist l’informe de la Comissió de Garanties de data 23 de juny de 2017; vist l’informe proposta del responsable de recerca i Innovació en salut, de data 24 de juliol de 2017, i fent ús de les atribucions que m’han estat conferides per l’art. 97.1, apartat c) del Decret 6/2017, de 17 de gener, de reestructuració del Departament de Salut,

Resolc:

Autoritzar el projecte 02/2017 “Derivación de células madre embrionarias humanas a partir de blastómeros aislados”, amb la indicació del deure d’informar al Departament de Salut de qualsevol modificació que es produeixi en les condicions del projecte de recerca, així com l’obligació del trasllat dels resultats del projecte amb periodicitat anual i en el moment que finalitza la recerca.

Contra aquesta resolució, que no exhaureix la via administrativa, es pot interposar recurs d’alçada davant el conseller de Salut, en el termini d’un mes a comptar de l’endemà de la notificació de la resolució, segons el que estableixen els articles 121 i 122 de la Llei 39/2015, d’1 d’octubre, del procediment administratiu comú de les administracions públiques.

Barcelona, 25 de juliol de 2017

Aquest document està signat electrònicament pel director general de Recerca i Innovació en Salut, Albert Barberà Lluís.
Resolució per la qual s'autoritza l'addenda: “Incloure 105 embrions humans” del projecte de recerca: Derivación de células madre embrionarias humanas a partir de blastómeros aislados

Fets

1.- En data 21/09/2020, el Sr. Josep Santaló de l’entitat Universitat Autònoma de Barcelona (UAB) presenta sol·licitud al Departament de Salut, mitjançant correu electrònic, per autoritzar la l’addenda: “Incloure 105 embrions humans” del projecte de recerca: Derivación de células madre embrionarias humanas a partir de blastómeros aislados.

S’adjunta a la sol·licitud d’autorització la documentació que s’especifica a l’annex del Reial decret 1527/2010, de 15 de novembre, pel qual es regulen la Comissió de Garanties per a la Donació i Utilització de Cèl·lules i Teixits Humans i el Registre de Projectes de Recerca; així com el Dictamen favorable, emès el 17/09/2020 pel Comitè d’Ètica d’Investigació de l’extingida Fundació Centre de Medicina Regenerativa de Barcelona (CMRB) que actua a dia d’avui en el marc funcional de l’Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), mantenint les competències que li foren atribuïdes per la Disposició addicional única del Decret 406/2006, de 24 d’octubre, pel qual es regulen els requisits i el procediment d’acreditació dels comitès d’ètica d’investigació clínica.

2.- En la sessió de data 24/09/2020 la Comissió de Garanties per a la Donació i Utilització de Cèl·lules i Teixits Humans emet l’informe favorable respecte l’esmentada addenda del projecte de recerca, d’acord amb els arts. 6 i 8.3 del Reial decret 1527/2010.

Fonaments de dret

1.- La Llei 14/2007, de 3 de juliol, de recerca biomèdica, en el seu article 34 estableix les garanties i requisits per a la recerca amb mostres biològiques de naturalesa embrionària; recerca que s’ha de realitzar d’acord amb les condicions establertes en la Llei 14/2006, de 26 de maig. L’article 35 estableix que la recerca requereix l’informe previ favorable de la Comissió de Garanties per a la Donació i Utilització de Cèl·lules i Teixits Humans.

2.- El Reial decret 2132/2004, de 29 d’octubre, pel qual s’estableixen els requisits i procediment per sol·licitar el desenvolupament de projectes de recerca amb cèl·lules troncals obtingudes de preembrions sobrants, en el seu article 4, estableix les condicions dels projectes.

3.- El Reial decret 1527/2010, de 15 de novembre, pel qual es regulen la Comissió de Garanties per a la Donació i Utilització de Cèl·lules i Teixits Humans i el Registre de Projectes de Recerca, en els articles 6, 7, 8, 9 i annex, determina l’informe, l’avaluació, l’autorització i el seguiment dels projectes de recerca.

4.- El Decret 406/2006, de 24 d’octubre, pel qual es regulen els requisits i el procediment d’acreditació dels comitès d’ètica d’investigació clínica, en la Disposició addicional única, va...
atribuir al CEIC de la Fundació CMRB la funció d'avaluar i informar els projectes d'investigació amb cèl·lules troncals obtingudes de preembrions sobrants de les tècniques de reproducció assistida que es duguin a terme en l'àmbit territorial de Catalunya. Com també la funció d'avaluar i informar els projectes d'investigació amb cèl·lules mare embrionàries humans produïdes en els bancs de líines cel·lulars estatals o procedents de altres països que es duguin a terme a l'àmbit territorial de Catalunya. El Comitè manté aquesta atribució en els termes exposats al fet primer d'aquesta Resolució.

Per tot el que s'ha exposat, vist que la documentació que acompanya la sol·licitud compleix els requisits establerts en el Reial Decret 1527/2010, de 15 de novembre; vist el Dictamen favorable emès pel Comitè d’Ètica en Investigació, vist l’informe de la Comissió de Garanties per a la Donació i Utilització de Cèl·lules i Teixits Humans que han estat esmentats a la relació de fets de la present Resolució,

D’acord amb les atribucions que m’han estat conferides per l’art. 97.1, apartat c) del Decret 6/2017, de 17 de gener, de reestructuració del Departament de Salut,

Resolc

Autoritzar la l’addenda: “Incloure 105 embrions humans” del projecte de recerca: Derivación de células madre embrionarias humanas a partir de blastómeros aislados, amb la indicació del deure d’informar al Departament de Salut de qualsevol modificació que es produexhi en les condicions del projecte de recerca, així com l’obligació del trasllat dels resultats del projecte amb periodicitat anual i en el moment que finalitza la recerca.

Contra aquesta resolució, que no exhaureix la via administrativa, es pot interposar recurs d’alçada davant la persona titular del departament de Salut, en el termini d’un mes a comptar de l’endemà de la notificació de la resolució, segons el que estableixen els articles 121 i 122 de la Llei 39/2015, d’1 d’octubre, del procediment administratiu comú de les administracions públiques.

Directo general de Recerca i Innovació en Salut
Anexo 7
Informe favorable del CEIC del CMRB
Don Joan Costa Pagès, en su condición de Presidente del Comité de Ética de Investigación Clínica (CEIC) del Centro de Medicina Regenerativa de Barcelona

CERTIFICA:

Que el mencionado CEIC, en su reunión del 9 de febrero de 2017, ha evaluado el siguiente proyecto de investigación:

02/2017 Derivación de células madre embrionarias humanas a partir de blastómeros aislados
Investigador principal: Dr. Josep Santaló Pedro
Entidad principal: Universitat Autònoma de Barcelona (UAB)

Se ha considerado que el proyecto se ajusta a los requisitos establecidos en la Ley 14/2006, la Ley 14/2007, Real Decreto 2132/2004 y en el Real Decreto 1527/2010; y cumple con los criterios y valoraciones del propio Comité en los aspectos metodológicos y éticos.

Por lo que este Comité emite su dictamen favorable y lo traslada a la UAB.

El investigador principal será el responsable de enviarlo al Departament de Salut, el cual, en uso de sus competencias lo presentará, en su caso para su evaluación, a la Comisión de Garantías para la Donación y Utilización de Células y Tejidos Humanos del Instituto de Salud Carlos III.

Y para que conste a los efectos que procedan, firmo el presente documento en Barcelona a nueve de febrero de dos mil diecisiete.
Anexo 8

Curriculum Vitae del Investigador Principal
CV Prof. Josep Santaló

Reproductive Specialist and Full Professor of Cell Biology, having developed his teaching activities at the Faculty of Biosciences since 1985. He is currently coordinating the PhD program in Cell Biology, the Official Master's Degree in Cytogenetics and Biology of Reproduction and the Master of Biology of Reproduction and Human Assisted Reproduction Techniques jointly organized by the Universitat Autònoma de Barcelona and the Institut Universitari Dexeus. He participates in the Master of Medical Genetics of the Universitat Autònoma de Barcelona and in the Master of Bioethics and Law of the Universitat de Barcelona.

He has developed the task of Vice-Dean of the Faculty of Sciences (1995-1999) and Vice-Rector of Research of the Universitat Autònoma de Barcelona (2002-2005).

He has been responsible for different research projects on the genetic characterization and freezing of preimplantation embryos and induction of oocyte maturation in vitro. He has participated in several projects on the influence of in vitro fertilization on the genetic characteristics of embryos and on programs to obtain transgenic animals. He is a member of the GIEPH (Research Group on Human Preimplantation Embryos), a research group that developed pre-implantation diagnosis (PGD) and obtained the first case of sex selection by PGD in the Spanish state (the third reported worldwide). This activity represented a hallmark in the use of PGD in Spain since he actively contributed to disseminating this technology among many human reproductive centres by performing embryo biopsies and diagnosis. All this activity culminated in the creation by his students and colleagues of a spin off enterprise devoted to PGD analysis.

He is currently working on the study of genetic reprogramming after nuclear transfer and on new embryonic stem cell (ESC) derivation strategies. He collaborates with an international initiative funded by EU, PLASTICHEAL, on the effect of microplastics on human health.

His research in Bioethics is currently focused on ethical aspects of genome editing on human germ lines and embryos and on the relationship between epigenetics and bioethics.

He is the author of 161 articles in scientific journals, 100 of them indexed (ISI WOK), 28 chapters of books and 13 documents in Bioethics. Reference's metrics: Total citations: 1872. Total references in first quartile (Q1): 31 (ISI WOK). h index: 21 (ISI WOK). He has been coEditor-in-Chief of MEDRE, a scientific journal on reproductive medicine and embryology.

He has participated in 33 research projects, 12 of which as Principal Investigator.

He has supervised 17 PhD thesis and 2 more un progress and 16 master's degrees. This activity has contributed to the formation of a great variety of professionals currently working in science centres related to reproduction, both as leader groups or postdoctoral investigators, and in human assisted reproduction centres.

He has been evaluator of different research projects as coCoordinator in ANEP (Spain), FWO (Belgium) and AQU (Catalunya). He collaborates as research evaluator with EQA and ACIE (two Spanish certification enterprises). He has also collaborated with different scientific journals and in PhD and Master committees, in committees for academic positions and scientific-divulgate juries.

He is currently collaborating with different Human Reproduction Centres (IU Dexeus, Eugin) with which he established research agreements and Industrial PhD initiatives to explore and develop new technologies related to human reproduction.

He is currently Ombudsman of the Institut d'Investigació Biomèdica of the Hospital de Sant Pau in Barcelona working on Research Integrity and dealing with cases of research misconducting. He has been Chairman of the Ethics Committee on Animal and Human Research (2007-2016) being an ordinary member until 2022 and created and became the first Chairman of the Biosafety Committee (2007-2016) of the Universitat Autònoma de Barcelona, member of the Executive Committee of the Observatory of Bioethics and Law the Universitat de Barcelona (from 2017), of the Working Group for the study and ethical reflection on biomedical research of the Bioethics Committee of Catalonia of the Department of Health of the Generalitat de Catalunya, the Hinxton Group: An International Consortium on Stem Cells, Ethics and Law and of ARRIGE (from 2018).

He has been a member of the Advisory Committee of the ESHRE (1992-1994 and 2000-2002) and of the Steering Committee of the PGD Consortium of ESHRE's Special Interest Group on Reproductive Genetics. He is a founding member of ASEBIR, of which he was Vice-President (1993-1995) and of which he is been Treasurer (2013-2017). He has been or currently is member of other scientific societies.

He has also contributed to scientific dissemination and communication to the society through active participations in conferences in schools, atheneums and scientific societies as well as interviews in TVs, radio stations, newspapers and magazines.
Proyecto: Derivación de células madre embrionarias humanas a partir de blastómeros aislados
Introducción
Se ha descrito que las células madre embrionarias humanas (hESC) presentan unas características biológicas y epigenéticas que les asemejan más a las células madre epiblásticas de ratón (EpiSC) que a las embrionarias (mESC) (Nichols et Smith, 2009). Las EpiSC corresponden a un estadio de desarrollo embrionario post-implantatorio, y se dice que presentan una pluripotencia primed. Las mESC, en cambio, poseen una pluripotencia naïve que se corresponde con un estadio pre-implantacional. Se considera que las células naïve tienen una mayor capacidad de diferenciación a cualquier tipo celular y, por tanto, revisten un mayor interés en el campo de la medicina regenerativa (Fiorenzano et al., 2015).
La derivación de hESC usando medio de cultivo convencional (un medio con suero y basic fibroblast growth factor [bFGF]) da lugar a líneas de hESC primed (Nichols et Smith, 2009). Recientemente, varios grupos han conseguido obtener hESC naïve a partir de líneas de hESC primed mediante diferentes métodos como el uso de técnicas de manipulación genética para inducir la sobre-expresión de algunos genes (Hanna et al., 2010; Takashima et al., 2014; Theunissen et al, 2014) o la combinación de varios factores e inhibidores de vías de señalización en el medio de cultivo (Gu et al., 2012; Gafni et al., 2013; Ware et al., 2014; Duggal et al., 2015). También ha sido posible derivar directamente hESC en estado naïve a partir de preembriones, pero siempre con una eficiencia muy baja (Gafni et al., 2013; Ware et al., 2014).
Un estudio reciente sobre el estado de inactivación del cromosoma X sugiere que las hESC derivadas a partir de blastómeros aislados podrían presentar características propias de células naïve, pero las perderían a lo largo del cultivo (Geens et al., 2016). Se analizó una línea de hESC derivada a partir de un blastómero aislado y se observó que, a pasajes bajos, las células presentaban un patrón de inactivación al azar de uno de los dos cromosomas X y que, más adelante en el cultivo, se podía ver en la población celular una inactivación preferencial de uno de ellos. Dado que en el preembrión humano la inactivación del cromosoma X tiene lugar durante las fases iniciales del desarrollo, al observarse este patrón al azar en pasajes tempranos se puede hipotetizar que el blastómero original presentaba los dos cromosomas X activos o que se produjo una activación de uno de los dos cromosomas X al azar en un momento muy temprano del cultivo. Así pues, se cree que las hESC que provienen de blastómeros aislados presentan en algún momento al inicio del cultivo los dos cromosomas X activos, característica que está relacionada con la pluripotencia naïve.
De confirmarse estas hipótesis, se podrían obtener líneas de hESC naïve a partir de blastómeros aislados, sin necesidad de convertir líneas de hESC primed ya establecidas. Por
otro lado, sería interesante optimizar las condiciones de cultivo a fin de evitar que estas características naïve se pierdan con el cultivo revertiendo a las características primed típicas de las hESC en cultivo.

En este sentido, en un estudio recientemente publicado se han conseguido derivar hESC naïve a partir de células aisladas de la masa celular interna del blastocisto mediante inmunocirugía (Guo et al., 2016). Se ha observado que estas líneas de hESC expresan genes propios de pluripotencia naïve, presentan un genoma hipometilado respecto de las hESC convencionales y tienen alta actividad mitocondrial. Estos resultados demuestran que es posible evitar que las células pierdan sus características naïve durante el proceso de derivación.

Objetivos del proyecto

En este proyecto se pretende derivar líneas de hESC a partir de blastómeros aislados de preembriones en estadio de células mediante biopsia, y también a partir de blastocístos enteros. Con las líneas obtenidas se contempla analizar diferentes indicadores de pluripotencia naïve a distintos pasajes de cultivo para determinar si las hESC provenientes de blastómeros aislados presentan características de pluripotencia naïve en contraste con la pluripotencia primed que se observa en las hESC convencionales derivadas a partir de blastocístos enteros.

Por otro lado, se pretende optimizar las condiciones de cultivo a fin de mantener esta característica naïve a lo largo de los distintos pasajes a fin de evitar que reviertan a primed por efecto del cultivo.

Relevancia científica

La importancia de obtener hESC naïve reside en el hecho de que su diferenciación dirigida a células de diferentes tejidos del organismo se podría conseguir más fácilmente, de manera que serían idóneas para llevar a cabo terapias de medicina regenerativa (Yabut et Bernstein, 2011). Así, por ejemplo, Hikabe y col (2016) describen que únicamente utilizando hESC naïve se consigue la obtención de ovocitos in vitro a partir de células pluripotentes.

Por otro lado, la derivación de hESC a partir de blastocístos conlleva la destrucción del preembrión, lo cual genera un problema ético asociado. Por ello se ha propuesto la posibilidad de derivar hESC a partir de blastómeros individuales obtenidos mediante biopsia (Klimanskaya et al., 2007; Ilic et al., 2009; Geens et al., 2009; Yang et al., 2013). Esta técnica presenta algunas ventajas respecto de la derivación de ESC convencional. Por un lado, no es necesario destruir el preembrión puesto que pueden derivarse las hESC a partir de un blastómero mientras que el resto del preembrión biopsiado mantiene su viabilidad. Por otro lado, la utilización por
separado de todos los blastómeros de un preembrión para iniciar la derivación, si bien conllevaría su destrucción, permitiría aumentar las probabilidades de obtener al menos una línea de ESC de cada preembrión, ya que cada uno de los blastómeros tiene capacidad para dar lugar a una línea de ESC siempre y cuando la eficiencia de derivación a partir del blastómero aislado sea suficientemente aceptable. Esto permitiría reducir el número total de preembriones utilizados.

Hay que tener también en cuenta que los datos reportados de eficiencia al derivar hESC directamente en estado naïve a partir de blastocistos enteros son inferiores al 1% (Ware et al., 2014), en contraste con el 40-50% de eficiencia que se puede obtener al derivar hESC en condiciones primed. Por ello, si se pudieran obtener líneas de hESC naïve a partir de blastómeros aislados, donde la eficiencia de derivación puede llegar al 20%, se conseguiría efectivamente disminuir el número de preembriones necesarios para obtener dichas líneas.

Finalmente, pese a que las eficiencias aún son muy bajas, en un futuro esta técnica podría ser de gran utilidad ya que se podría combinar con un ciclo de diagnóstico genético preimplantacional para obtener hESC específicas del individuo nacido, evitando así un posible rechazo inmunológico en ser re-introducidas después de un proceso de diferenciación dirigida (Yang et al., 2013).

Material y métodos

Derivación y cultivo de hESC

A fin de derivar hESC a partir de blastómeros aislados éstos se aislan mediante una biopsia de preembriones en estadio de 8 células. Para ello se utilizará un micromanipulador con el cual se realizará un agujero en la zona pelúcida mediante una solución ácida de Tyrode dispensada mediante una micropipeta de 10 µm de diámetro, y se extraerán los blastómeros succionándolos con una micropipeta de 30 µm de diámetro. Los blastómeros así aislados serán cultivados en placas de microgotas de 50 µl sobre una monocapa de células humanas inactivadas con un tratamiento con mitomicina para evitar su proliferación (*feeder cells: Human Foreskin Fibroblasts*, HFF) durante una semana y luego serán traspasadas a placas de cuatro pocillos también sobre una monocapa de HFF. Para la derivación a partir de preembriones enteros, a los blastocistos se les eliminará la zona pelúcida mediante una breve exposición a una solución ácida de Tyrode y luego serán sembrados directamente en placas de cuatro pocillos sobre una monocapa de HFF. El cultivo se realizará a 37°C y 5% de CO₂. El medio se renovará cada dos días y las células se subcultivarán cada 7 días.
Tanto las líneas de hESC provenientes de blastómeros aislados como las obtenidas a partir de blastocistos se cultivarán en un medio de cultivo que proporcione una eficiencia óptima de derivación a partir de blastómeros aislados y que genere hESC primed a partir de blastocistos. En principio se ha previsto un medio compuesto por Dulbecco’s Minimal Essential Medium (DMEM), bFGF, 2i (una combinación de un inhibidor de la vía de señalización de la MAPkinasa -PD032591- junto con un inhibidor de GSK3β -CHIR99021- que actúa activando la vía de señalización de Wnt) y Leukemia Inhibitor Factor suplementado con Knock out Serum Replacement, L-glutamina, 2-mercaptoetanol, aminoácidos no esenciales y penicilina/estreptomicina.

Caracterización por inmunofluorescencia y cálculo de la eficiencia de derivación

A las líneas de hESC obtenidas de les realizará una caracterización por inmunofluorescencia para confirmar su estado pluripotente. Se analizará la expresión de los marcadores de pluripotencia Oct4 y Sox2, y los de diferenciación AFP, α-SMA y Tuj1 después del cultivo en condiciones de diferenciación. Las células se fijarán con paraformaldehído al 4% durante 15 min y se incubarán en solución de bloqueo y permeabilización (compuesta por PBS 1X, 0.2% de azida sódica, 0.5% de tritón X-100 y 3% de suero de cabra) durante 30 min a 37°C. A continuación se dejarán incubando con el anticuerpo primario durante toda la noche a 4°C y seguidamente se añadirá el anticuerpo secundario y se incubarán en la oscuridad durante 2 h. Finalmente se realizará una tinción nuclear mediante Hoescht-33258 y las muestras se valorarán en un microscopio de epifluorescencia. La eficiencia de derivación se calculará como el número de líneas de hESC establecidas respecto el número de blastómeros o blastocistos sembrados.

Análisis de indicadores de pluripotencia naïve

Tanto las líneas de hESC obtenidas a partir de blastómeros aislados como las derivadas a partir de blastocistos serán analizadas en los pasajes 3, 10 y 15, donde se estudiaron los siguientes indicadores de pluripotencia naïve:

- Se analizará la expresión de varios genes marcadores de pluripotencia naïve como Nanog, KLF4 o TFCP2L1 mediante una RT-PCR cuantitativa. Para ello se extraerá y se purificará el RNA celular y a continuación se realizará la reacción de transcripción reversa utilizando primers específicos para el gen de interés, con la cual se obtendrá el cDNA del gen. Los niveles de cDNA se detectaran mediante un colorante no intercalante (por ejemplo SYBR Green).
- Se estudiará la respiración mitocondrial mediante la tinción TMRE, que permite observar cambios en el potencial de la membrana mitocondrial. Para ello se añadirá el colorante TMRE al medio de cultivo con las células a una concentración final de 50-200 nM y éstas se incubarán durante 20 min a 37ºC. Seguidamente se hará un lavado con PBS y se observarán las células vivas al microscopio de epifluorescencia.

- Se observará el estado de inactivación del cromosoma X en las células femeninas. Para ello se realizará una inmunofluorescencia para detectar foci de H3K27me3 y también se llevará a cabo un análisis de la expresión del gen XIST mediante RT-PCR cuantitativa.

- Se determinará el grado de metilación de determinados promotores mediante una secuenciación, previa conversión con bisulfito. Para ello se extraerá y purificará el DNA celular, se desnaturalizará a 98ºC y se incubará con bisulfito a 50 ºC durante 4-6 h. Posteriormente se realizarán lavados con NaOH 3N y con etanol al 80% y se procederá a amplificar la región de interés mediante una PCR. Finalmente se procederá a la secuenciación del fragmento amplificado para determinar su estado de metilación.

Los datos obtenidos de derivación y de la caracterización naive vs primed de las líneas de hESC obtenidas a partir de blastómeros aislados serán comparados con los obtenidos a partir de blastocistos, los cuales actuarán como grupo control.

Material inventariable disponible

El trabajo experimental descrito se llevará a cabo en los laboratorios del departamento de Biología Celular, Fisiología e Inmunología de la Universitat Autònoma de Barcelona. Se dispone del equipo necesario básico en un laboratorio de cultivo y manipulación de preembriones de mamíferos, incluyendo:

- Cabinas de flujo horizontal y de seguridad biológica
- Incubadores de CO₂
- Microscopios estereoscópicos
- Microscopios invertidos equipados con epifluorescencia
- Microscopios de fluorescencia
- Micromanipuladores
- Utillaje para fabricación de herramientas de micromanipulación embrionaria (pipette puller y microforja)
- Tecnología de cultivo time lapse (Primovision)

así como el utillaje básico en una unidad de Biología Celular, incluyendo:

- Centrífugas
- Neveras y congeladores (-20 y -80 ºC)
- Congelador biológico programable y contenedores de LN₂
- Microscopios convencionales equipados con equipos de fluorescencia y captura de imágenes

El desarrollo del proyecto se llevará a cabo en colaboración con el Departamento de Investigación de la Clínica Eugin de Barcelona el cual aportará la siguiente infraestructura en investigación:
- infraestructura de biología molecular (espectrofotómetro, PCR cuantitativa y semi-cuantitativa, electroforesis...)
- infraestructura de immunohistoquimica incluyendo microscopia de fluorescencia y confocal.

Equipo humano

El presente proyecto se llevará a cabo en la Unitat de Biologia Cel·lular de la Facultat de Biociències de la Universitat Autònoma de Barcelona, por lo que contará con el soporte de dos técnicos de soporte a la investigación con dedicación parcial al mismo, cuya labor será proporcionar el material básico para el desarrollo del proyecto (soluciones básicas, procesos de esterilización, preparación de los medios de cultivo y *feeder cells*, protocolos de mantenimiento y limpieza del material inventariable descrito, etc.).

Así mismo participarán en el mismo:

- Dr. Josep Santaló Pedro, catedrático de Biología Celular de la UAB. Encargado del diseño y la dirección del proyecto propuesto, así como de la supervisión del desarrollo del mismo y la interpretación y discusión de los resultados y la elaboración de las conclusiones que de él se deriven (se adjunta CV).
- Dra. Elena Ibáñez de Sans, profesora agregada de la Unitat de Biologia Cel·lular. Encargada del diseño y la supervisión del desarrollo del mismo, así como de la interpretación y discusión de los resultados y la elaboración de las conclusiones que de él se deriven (se adjunta CV).
- Ot Massafret Surinyach, graduado en Biotecnología y estudiante de doctorado bajo la supervisión de los doctores mencionados. Encargado del desarrollo básico del proyecto y del trabajo experimental del mismo. Participará en la interpretación y discusión de los resultados y la elaboración de las conclusiones que de él se deriven (se adjunta CV).

Así mismo se prevé la colaboración con el Departamento de Investigación de la Clínica EUGIN de Barcelona que participará en el proyecto mediante la participación de:

- Dra. Rita Vassena, directora del citado Departamento, quien dirigirá los experimentos de expresión génica de los genes marcadores *naïve* mencionados, así como de la
determinación del grado de metilación de los promotores elegidos. Así mismo participará en la interpretación y discusión de los resultados y la elaboración de las conclusiones que se deriven del desarrollo del proyecto (se adjunta CV).

- Dr. Gustavo Tiscornia, investigador senior del citado Departamento, y profesor de biología de las células madres en la Universidad de Algarve, Portugal, quien dirigirá los experimentos de expresión génica de los genes marcadores naïve mencionados, así como de la determinación del grado de metilación de los promotores elegidos. Así mismo participará en la interpretación y discusión de los resultados y la elaboración de las conclusiones que se deriven del desarrollo del proyecto (se adjunta CV).

Presupuesto

Material para el cultivo y manipulación embrionarios (medio de cultivo, soluciones)	6.000€
Material de plástico de un solo uso	3.000€
Material de micromanipulación	2.000€
Material de immunofluorescencia (anticuerpos 1arios y 2arios)	7.000€
Material de RT-PCR	5.000€
Material para análisis de metilación de promotor	7.000€
Gastos de mantenimiento y amortización	3.000€
Gastos de publicación	2.000€
Total	**35.000€**

Los gastos de personal no se incluyen en el presupuesto.

Cálculo de pre embriones necesarios

Se estima que se requerirán unas 20 líneas de hESC, que serán analizadas para los parámetros anteriormente descritos por cada uno de los dos grupos. Con esta n se calcula que los resultados tendrán una significación estadística suficiente como para extraer conclusiones de los mismos.

Se estima que la eficiencia de derivación con el medio que se va a utilizar en este proyecto será parecida a la reportada para el medio tradicional (DMEM suplementado con KSR y FGF). Según la bibliografía, la eficiencia de derivación de hESC a partir de blastocistos usando el medio tradicional oscila entre el 20 y el 50% (Ilic et al., 2007; Meng et Rancourt, 2013), por lo cual se calcula que se necesitarán 60 preembriones. En cuanto a la derivación de hESC a partir de blastómeros aislados, la eficiencia de derivación descrita es inferior (1-20%) (Klimanskaya et
al., 2006; Illic et al., 2009), por lo que se requiere una mayor. No obstante, se debe tener en cuenta que cada uno de los blastómeros puede dar lugar a una línea de hESC. Si se estima que de cada preembrión se obtienen 4 blastómeros sanos aptos para derivar una línea de hESC y asumimos una eficiencia de derivación a partir de blastómeros aislados del 5%, se necesitarán 100 preembriones.

Hay que considerar el hecho de que para el estudio de la inactivación del cromosoma X se requieren hESC femeninas, es decir que sólo la mitad de los preembriones serán útiles para realizar este análisis. Aun así, las células masculinas son perfectamente viables para analizar el resto de parámetros mencionados anteriormente. En total, pues, se necesitarán 160 preembriones humanos viables.

Se solicitarán preembriones criopreservados, donados para la investigación, en los siguientes estadios: Pronúcleos (PN, para cultivarlos hasta 8 células y realizar la biopsia), 4-8 células (D+2 y D+3, para realizar la biopsia y/o cultivarlos hasta blastocisto). En términos generales se prefiere el cultivo previo al inicio del proceso de derivación ya que ello permite conocer la viabilidad embrionaria, requisito necesario para el éxito en el proceso de derivación. Los porcentajes de recuperación estimados en cada uno de estos estadios es variable en función de los protocolos de criopreservación (congelación lenta o vitrificación) y la procedencia de los preembriones (en función de cada centro), por lo que se ha realizado una estimación en base a la experiencia previa sobre derivación a partir de blastómeros aislados realizados por el IP del grupo (Dr. Josep Santaló) en el Centro de Medicina Regenerativa de Barcelona en 2012.

Así, se ha estimado una tasa de recuperación del 70% para preembriones congelados en PN y del 90% para los congelados en D+2 y D+3. Teniendo en cuenta que el número de preembriones donados para investigación congelados en PN disponibles en los centros de reproducción es bajo, se ha estimado que solo la mitad de los 100 preembriones necesarios para realizar la biopsia, es decir 50 podrán tener este origen. Teniendo pues en cuenta la tasa de recuperación del 70% para este tipo de preembriones se requerirán 71 preembriones congelados a PN. Los 50 preembriones restantes serán preembriones congelados a D+2, que sumados a los 60 necesarios para la derivación a partir de blastocistos significa un total de 110 preembriones. Asumiendo una eficiencia de recuperación del 90%, ello significa la necesidad de disponer de 122 preembriones congelados a D+2 o D+3. Por otro lado habrá que contar con un mínimo de 40 preembriones disponibles para las fases de puesta a punto de las distintas técnicas por lo que, teniendo en cuenta el 90% de tasa de recuperación significarán 45 prepreembriones adicionales.

Se requerirá pues un total de **238 preembriones criopreservados**.
En caso de que no se dispusiera de suficientes preembriones congelados en PN o en D+2 o D+3 podrían utilizarse preembriones criopreservados en estadio de blastocisto, únicamente para el grupo control y teniendo en cuenta que ello implicaría iniciar el proceso de derivación inmediatamente sin poder garantizarse la viabilidad embrionaria.

Los siguientes centros han manifestado su predisposición a donar los preembriones necesarios para la realización de este proyecto y con los cuales se firmarán los correspondientes convenios (se adjunta modelo, anexo 1):

- Clínica Eugen
- Clínica Sagrada Familia
- Hospital Quirón-Barcelona
- Salut de la Dona-Dexeus

Fases del proyecto

El proyecto constará de las siguientes fases:

1. Puesta a punto de la técnica de derivación de hESC a partir de blastocistos y blastómeros aislados bajo las condiciones especiales descritas.
2. Derivación de líneas de hESC a partir de blastocistos.
 a) Caracterización por inmunofluorescencia de las líneas obtenidas.
 b) Cálculo de las eficiencias de derivación para cada grupo.
3. Derivación de líneas de hESC a partir de blastómeros aislados.
 a) Caracterización por inmunofluorescencia de las líneas obtenidas.
 b) Cálculo de las eficiencias de derivación para cada grupo.
4. Análisis de los indicadores de pluripotencia naïve. Se estudiarán los siguientes parámetros en los pasajes 3, 10 y 15 de cultivo en los 2 grupos experimentales:
 a) Expresión de genes marcadores.
 b) Actividad de la membrana mitocondrial.
 c) Grado de metilación de determinados promotores.
 d) Estado de inactivación del cromosoma X en las células femeninas.
5. Optimización de las condiciones de cultivo para el mantenimiento de la eventual pluripotencia naïve obtenida de las líneas derivadas a partir de blastómeros aislados.
6. Análisis y difusión de los resultados y elaboración de las conclusiones de los mismos.
La programación de estas tareas se muestra en el siguiente cronograma, organizado por trimestres durante tres años:

<table>
<thead>
<tr>
<th>Tarea</th>
<th>Primer año</th>
<th>Segundo año</th>
<th>Tercer año</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Condiciones de la cesión del material reproductivo

La donación del material reproductivo (preembriones) por parte de los centros de Reproducción Asistida que participarán en el proyecto quedará regulada a través de un Convenio de Colaboración (modelo adjunto, anexo 1) entre la Universitat Autònoma de Barcelona y el centro en cuestión.

Custodia y confidencialidad de los datos personales

Los donantes del material reproductivo firmarán un documento de consentimiento informado en el momento de la donación (documento adjunto, anexo 2). Dichos consentimientos informados contendrán la identidad de los donantes sin ningún otro dato personal. El resto de los datos personales quedará en poder del centro de reproducción asistida colaborador sin que sean transmitidos a la Universitat Autònoma de Barcelona. En el momento de la cesión el material reproductivo estará codificado mediante un código alfanumérico, el cual vinculará el material con la identidad de los donantes. Dicho código figurará en el documento de cesión que se firmará en el momento en que ésta se haga efectiva y que se acompañará de los correspondientes consentimientos informados (se adjunta modelo, anexo 3) aprobados por la Comisión de Ética en Experimentación Animal y Humana de la UAB en sesión del 16 de diciembre de 2016 (anexo 4). Ambos documentos (consentimientos informados y cesión de material) serán custodiados por la Universitat Autònoma de Barcelona y no contendrán otra información personal aparte de la identidad de los donantes. La información contenida en los mismos será considerada como confidencial y la Universitat Autònoma de Barcelona se compromete a restringir su acceso a los mismos exclusivamente a los investigadores relacionados con el proyecto y a que la identidad de los donantes no sea revelada bajo ningún
concepto. Los centros de reproducción colaboradores se comprometerán, mediante el citado convenio (anexo 1), a mantener la trazabilidad de las muestras cedidas. Las muestras serán codificadas y tratadas sin que figure la identidad de los progenitores. La clave de correspondencia entre los códigos y la identidad de los progenitores será confidencial y estará en un servidor seguro de acceso restringido y protegido mediante contraseña para asegurar la confidencialidad y la trazabilidad del acceso.

Compensación económica

Los donantes del material reproductivo no percibirán ninguna compensación económica por los mismos y renunciarán explícitamente a la reclamación de compensaciones económicas derivadas de los posibles beneficios como resultado del desarrollo del presente proyecto, de acuerdo con lo estipulado en la Ley 14/2007 de Investigación Biomédica. Igualmente, los centros de reproducción asistida participantes no percibirán ninguna compensación económica por la cesión del material reproductivo y manifestarán, a través de la firma del mencionado convenio (anexo 1), la no existencia de intereses económicos en la tecnología que pueda derivarse del desarrollo del proyecto (de acuerdo con el artículo 15.e de la ley 14/2006).

Compromiso de trazabilidad y cesión de las hESC derivadas.

El investigador responsable se compromete mediante escrito (se adjunta, anexo 5), a informar del destino pormenorizado de los distintos preembriones empleados en el desarrollo del proyecto y a garantizar la trazabilidad de los mismos al Instituto de Salud Carlos III, así como a ceder una muestra de las distintas líneas celulares derivadas a lo largo del desarrollo del proyecto al nodo de Barcelona del Banco de Líneas Celulares situado en el Centro de Medicina Regenerativa para su correspondiente caracterización y custodia en el mismo.

Bibliografía