Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Stem Cell Line

Establishment of a human iPSC line (IISHDOi001-A) from a patient with McArdle disease

María del Carmen Ortuño-Costela^{a,b,c,d}, Nathalie Rodríguez-Mancera^a, Marta García-López^a, Francisco Zurita-Díaz ^{a,b,c,d}, Ana Moreno-Izquierdo ^{d,e}, Alejandro Lucía ^{d,f}, Miguel Ángel Martín ^d, Rafael Garesse ^{a,b,c,d}, M. Esther Gallardo ^{a,b,c,d,*}

ABSTRACT

delivered using Sendai virus.

^a Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain

^b Instituto de Investigaciones Biomédicas "Alberto Sols", (UAM-CSIC) Madrid, Spain

^c Centro de Investigación Biomédica en Red (CIBERER), Madrid, Spain

^d Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain

^e Servicio de Genética, Hospital 12 de Octubre, Madrid, Spain

^f Universidad Europea de Madrid, Spain

ARTICLE INFO

Article history: Received 18 July 2017 Accepted 20 July 2017 Available online 28 July 2017

Resource table

Unique stem cell line identifier	IISHDOi001-A
Alternative name(s) of stem cell line	MA5622-FiPS4F1
Institution	Instituto de Investigación Sanitaria Hospital
listitution	12 de Octubre, $i + 12$
Contact information of	Dr. M. Esther Gallardo
distributor	egallardo@iib.uam.es
Type of cell line	iPSC
Origin	Human
Additional origin info	Sex: female
Cell source	Human fibroblasts
Method of reprogramming	Sendai virus
Genetic modification	NO
Type of modification	N/A
Associated disease	McArdle disease
Gene/locus	Gene PYGM: c.148C>T; p.Arg50Ter
Method of modification	N/A
Name of transgene or resistance	N/A
Inducible/constitutive system	N/A
Date archived/stock date	June 2017
Cell line repository/bank	N/A
Ethical approval	Patient informed consent was obtained. This
	study was reviewed and approved by the
	Institutional Ethical Committee of the
	"Instituto de Investigaciones Biomédicas
	Alberto Sols", CSIC-UAM, 406 329 1.

* Corresponding author at: Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain,

E-mail address: egallardo@iib.uam.es (M.E. Gallardo).

Resource utility

Human iPSC line IISHDOi001-A was generated from fibroblasts of a patient with McArdle disease harbouring the

mutation, c.148C>T; p.Arg50Ter, in the PYGM gene. Reprogramming factors Oct3/4, Sox2, Klf4, and c-Myc were

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

McArdle disease is a disorder of carbohydrate metabolism inherited in an autosomal recessive way, associated with mutations in the PYGM gene. Patients with this disease experience exercise intolerance including, sometimes, rhabdomyolysis and myoglobinuria. The line IISHDOi001-A will be very useful for modelling this disease and searching for therapeutic approaches.

creativecommons.org/licenses/by-nc-nd/4.0/).

Resource details

The generation of the human iPSC line, IISHDOi001-A, was performed using non-integrative Sendai viruses containing the reprogramming factors Oct3/4, Sox2, Klf4, and c-Myc (Takahashi et al., 2007). For this purpose, fibroblasts from a patient with McArdle disease were employed. These fibroblasts harboured the most prevalent mutation among the Caucasian population, located in the *PYGM* gene (c.148C>T; p.Arg50Ter) (Nogales-Gadea et al., 2016). The presence of this mutation in the iPSCs was confirmed (Fig. 1A). IISHDOi001-A iPSC colonies displayed a typical ES-like colony morphology and growth behavior (Fig. 1B) and they stained positive for alkaline phosphatase activity (Fig. 1C). We confirmed the clearance of the vectors and the exogenous reprogramming factor genes by RT-PCR after twelve culture passages (Fig. 1D). The endogenous expression of the pluripotency associated transcription factors OCT4, SOX2, KLF4, NANOG, CRIPTO and REX1 was evaluated by quantitative real time polymerase chain reaction (qPCR) (Fig. 1E). Immunofluorescence analysis revealed expression of transcription factors OCT4, NANOG, SOX2 and surface markers SSEA3,

http://dx.doi.org/10.1016/j.scr.2017.07.020

1873-5061/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fig. 1. Molecular and functional characterization of the IISHDOi001-A iPSC line.

SSEA4, TRA-1-60 and TRA-1-81 characteristics of pluripotent ES cells (Fig. 1F). The iPSC line has been adapted to feeder-free culture conditions and displays a normal karyotype (46, XX) after more than twenty culture passages (Fig. 1G). We also confirmed by DNA fingerprinting analysis that the line IISHDOi001-A was derived from the patient's fibroblasts. In addition, the line was confirmed by PCR analysis to be mycoplasma-negative (Fig. 1H). Finally, the capacity of the generated iPSC line to differentiate into the three germ layers (endoderm, mesoderm and ectoderm) was tested *in vitro* using an embryoid body based assay (Fig. 1I).

Materials and methods

Reprogramming of McArdle fibroblasts into iPSCs

Human McArdle fibroblasts harbouring the mutation p.Arg50Ter in the *PYGM* gene were reprogrammed using the CytoTune-iPS 2.0 Sendai reprogramming kit following the instructions of the manufacturer. IISHDOi001-A was maintained and expanded both on feeder and feeder-free layers as described in Galera et al., 2016.

Phosphatase alkaline analysis

The iPSC line IISHDOi001-A was seeded on a feeder layer plate. After one week, direct phosphatase alkaline activity was determined using the phosphatase alkaline blue membrane substrate solution kit (Sigma, AB0300) (Table 1).

Mutation analysis

Total DNA from patient's fibroblasts and iPSCs was extracted using a standard phenol-chloroform protocol. Subsequently, a PCR was carried out with the primers listed in Table 2. Following PCR amplification, direct sequencing of amplicons was performed in an ABI 3730 sequencer (Applied Biosystems).

qPCR analysis

Total mRNA was isolated using TRIZOL and 1 µg was used to synthesize cDNA using the QuantiTect RT cDNA synthesis kit. One microliter of the reaction was used to quantify by qPCR the expression of the endogenous pluripotency associated genes (*OCT4, SOX2, KLF4, NANOG, CRIPTO* and *REX1*). Primers are listed in Table 2 (Aasen et al., 2008). All the expression values were normalized to the *GAPDH* gene. Plots are representative of at least three independent experiments.

Karyotype analysis

Karyotype analyses were carried out using cells with more than twenty culture passages. Briefly, cells were treated with 10 μ g/mL of Colcemid (Gibco) for 90 min at 37 °C, trypsinized, treated with hypotonic solution KCl 0.075 M, and fixed with Carnoy's fixative. Cells were then dropped on a microscope glass slide and dried. Metaphase cells were G banded using Wright staining. At least 20 metaphases were karyotyped.

Immunofluorescence analysis

Cells were grown on 0.1% gelatin-coated 35 mm culture plates (81,156, lbidi), fixed with 4% paraformaldehyde for 30 min at RT and permeabilized using TBS + (0.1% Triton X-100 in Tris-buffered saline, TBS) for 45 min. Then the cells were incubated in TBS + (3% donkey serum, 0.3% Triton X-100 in TBS) for 2 h at RT. Primary antibodies were applied overnight at 4 °C. Secondary antibodies for 2 h at RT. Nuclei were stained with DAPI (Sigma, 28718-90-3). All the antibodies are listed in Table 2.

In vitro differentiation assay

The *in vitro* pluripotency capacity of the line IISHDOi001-A was tested by spontaneous embryoid body differentiation. The protocol we have used has been described in detail by Galera et al., 2016.

Table 1 Characterization and validation.			
Classification	Test	Result	Data
Morphology Phenotype	Photography Immunocytochemisty Flow cytometry Cense scrowescion (ADCR)	Notmal Positive for the pluripotency markers: SSEA3, SSEA4, TRA-1-81, TRA-1-60, OCT4, NANOG, SOX2 N/A Positive for the adminitedency markers OCT4 KTE4 SOX2 CPUPTO NANOC REV1	Fig. 1 panel B Fig. 1 panel F
Canotyna	ucene expression (gr.c.v.) Alkaline phosphatase activity Krivotrue (C-brudine) and exclution	rosiuve du uie piuripoteiley markets oct 4, Azt 4, SOAZ, CMPT 10, MANOG, AZAT Positive AG VY	Fig. 1 panel C Fig. 1 panel C Fig. 1 panel C
Genotype	katyorype (G-ballung) and resolution Microsatellite PCR (mPCR)		rig. i patiel u
Mutation analysis (IF APPLICABLE)	STR analysis Sequencing	8 loci, all matched (D2S1338, D7S820, D8S1179, D13S317, D19S433, D21S11, VWA, amelogenin) Confirmation of the mutation: <i>PYGM</i> c.148C>T; pArg50Ter	Submitted in archive with journal Fig. 1 panel A
Microbiology and virology	Southern blot ON WGS Mycoplasma Sendai virus silencing	intra Viegative Vietus silenced	Fig. 1 panel H Fig. 1 panel D
Differentiation potential Donor screening (OPTIONAL) Genotype additional info (OPTIONAL)	Embryoid body formation and directed differentiation HIV 1 + 2 Hepatitis B, Hepatitis C Blood group genotyping HLA tissue typing	Positive for: smooth muscle actin (SMA), β-tubulin (Tuji1) and alpha-fetoprotein (AFP) N/A N/A	Fig. 1 panel 1

Table 2

Reagents details.

Antihodies used	for immunocyto	chemistry/flow-cytometry	

	Antibody	Dilution	Company Cat# and RRID	
Pluripotency markers	Mouse anti-TRA-1-81	1:150	Millipore Cat# MAB4381, RRID: AB_177638	
	Mouse anti-TRA-1-60	1:150	Millipore Cat# MAB4360, RRID: AB_11211864	
	Rabbit anti-SOX2	1:100	Thermo Fisher Scientific Cat# PA1-16968, RRID: AB_2195781	
	Mouse anti-SSEA4	1:10	Millipore Cat# MAB4304, RRID: AB_177629	
	Rat anti-SSEA3	1:20	Abcam Cat# ab16286, RRID: AB_882700	
	Goat anti-NANOG	1:25	R and D Systems Cat# sc-5279, RRID: AB_628051	
	Mouse anti-OCT4	1:100	Santa Cruz Biotechnology Cat# sc-5279, RRID: AB_628051	
Differentiation markers	Mouse anti- β tubulin isotype III	1:300	Sigma-Aldrich Cat# T8660, RRID: AB_528427	
	Mouse anti- AFP	1:300	Sigma-Aldrich Cat# WH0000174M1, RRID: AB_1839587	
	Mouse anti- SMA	1:400	Sigma-Aldrich Cat# A2547, RRID: AB_476701	
Secondary antibodies	Cy™2-conjugated AffiniPure Donkey Anti-Goat IgG (H + L)	1:50	Jackson ImmunoResearch Labs Cat# 705-225-147, RRID: AB_23073-	
	Cy™2-conjugated AffiniPure Goat Anti-Mouse IgG, Fcγ Subclass 2b specific	1:50	Jackson ImmunoResearch Labs Cat# 115-225-207, RRID: AB_233874	
	Cy™2-conjugated AffiniPure Goat Anti-Rabbit IgG (H + L)	1:50	Jackson ImmunoResearch Labs Cat# 111-225-144, RRID: AB_233802	
	Cy™3-conjugated AffiniPure Goat Anti-Rat IgM, µ chain specific	1:250	Jackson ImmunoResearch Labs Cat# 112-165-075, RRID: AB_233824	
	Cy™3-conjugated AffiniPure Goat Anti-Mouse IgG, Fcγ Subclass 3 specific	1:250	Jackson ImmunoResearch Labs Cat# 115-165-209, RRID: AB_233869	
	Cy™3-conjugated AffiniPure Donkey Anti-Mouse IgM, μ chain specific	1:250	Jackson ImmunoResearch Labs Cat# 715-165-020, RRID: AB_23408	
	Goat anti-mouse IgG (H $+$ L), Alexa Fluor 488	1:500	Thermo Fisher Scientific Cat# A-11029, RRID: AB_2534088	
Primers				
	Target		Reverse primer (5'-3')	
Pluripotency markers (qPCR)	Endo-KLF4		ATGATGGTGCTTGGT/ITGAAAACTTTGGCITCCITGTT	
	Endo-OCT4		TGGGATTAAGTTCTTCA/GCCCCACCCTTTGTGTT	
	Endo-SOX2	CAAAAATGGCCATGCAGGTT/AGTTGGGATCGAACAAAAGCTATT		
	REX1	CCTGCAGGCGGAAATAGAAC/GCACACATAGCCATCACATAAGG		
	CRIPTO	CGGAACTGTGAGCACGATGT/GGGCAGCCAGGTGTCATG		
	NANOG	ACAACTGGCCGAAGAATAGCA/GGTTCCCAGTCGGGTTCAC		
House-Keeping Genes (qPCR)	GAPDH	GCACCGTCAAGGCTGAGAAC/AGGGATCTCGCTCCTGGAA		
Fargeted mutation analysis/sequencing	PYGM	CAAATCAGTGTGCGTGGCCT/CCTTCTCATAGTAGTGCTGC		
/irus silencing	SeV	GGATCAC	TAGGTGATATCGAGC/ACCAGACAAGAGTTTAAGAGATATGTATC	
virus shereing	KOS		CCTACGACGTGAGCGC/ACCTTGACAATCCTGATGTGG	
	Klf4	TTCCTGCATGCCAGAGGAGCCC/AATGTATCGAAGGTGCTCAA		
	c-Myc	TAACTGACTAGCAGGCTTGTCG/TCCACATACAGTCCTGGATGATGATG		
STR analysis	D2S1338		CCAGTGGATTTGGAAACAGA/ACCTAGCATGGTACCTGCAG	
	D7S820	[6-FAM] TGTCATAGTTTAGAACGAACTAACG/CTGAGGTATCAAAAACTCAGAGG		
	D8S1179	. ,	TTTTTGTATTTCATGTGTACATTCG/CGTAGCTATAATTAGTTCATTTTCA	
	D13S317		ACAGAAGTCTGGGATGTGGA/GCCCAAAAAGACAGACAGAA	
	D195433		CCTGGGCAACAGAATAAGAT/TAGGTTTTTTAAGGAACAGGTGG	
	D21S11		GTGAGTCAATTCCCCAAG/GTTGTATTAGTCAATGTTCTCC	
	VWA	[6-FAM]		
	****	. ,	GGATGATAAGAATAATC/GGACAGATGATAAATACATAGGATGGATGG	
	Amelogenin		CCCTGGGCTCTGTAAAGAATAGTG/ATCAGAGCTTAAACTGGGAAGCTG	
Mycoplasma detection	MGSO		TCTGTCACTCTGTTAACCTC/GAGGTTAACAGAGCTGACAGATGGCGAAGCTG	
	GPO-3		AAACAGGATTAGATACCTC/AGGTATCTAATCCTGTTTGCTCCC	

DNA fingerprinting analysis

For DNA fingerprinting analysis the markers D13S317, D7S820, VWA, D8S1179, D21S11, D19S433, D2S1338 and amelogenin for sex determination have been amplified by PCR and analyzed by ABI PRISM 3100 Genetic analyzer and Peak Scanner v3.5 (Applied Biosystems) (Table 2).

Mycoplasma detection

Mycoplasma detection was performed by PCR analysis using 1 mL of the cell culture supernatant (3 days culture at 90% confluence). Primers used are specified in Table 2. The 300 bp band represents that the sample is positive for mycoplasma (positive control, C +). The band at 570 bp is an internal control to discard the inhibition of the polymerase.

Author disclosure statement

There are no competing financial interests in this study.

Acknowledgments

We are very grateful to Beatriz Moreno Moreno for her technical assistance. This work was supported by grants from: 1) the "Fondo de Investigación Sanitaria, Instituto de Salud Carlos III": PI10/0703, PI13/ 00556 and PI16/00789 to RG and PI15/00484 to MEG cofunded by FEDER, 2) from the "Centro de Investigación Biomédica en Red en Enfermedades Raras" (CIBERER): grants 13-717/132.05 and ER16P3AC717 to RG and 3) "Comunidad Autónoma de Madrid" (grant number S2010/BMD-2402 to RG). MDCOC receives grant support from CIBERER and FZD from the Ministerio de Educación, Cultura y Deporte (FPU13/00544). MEG is supported by a "Miguel Servet contract" (CP16/ 00046) from ISCIII-MINECO-Spain/FEDER-EU.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.scr.2017.07.020.

References

- Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilić, J., Pekarik, V., Tiscornia, G., Edel, M., Boué, S., Izpisúa Belmonte, J.C., 2008. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26 (11), 1276–1284.
- Galera, T., Zurita, F., González-Páramos, C., Moreno-Izquierdo, A., Fraga, M.F., Fernández, A.F., Garesse, R., Gallardo, M.E., 2016. Generation of a human iPSC line from a patient with Leigh syndrome. Stem Cell Res. 16 (1), 63–66.
- Nogales-Gadea, G., Godfrey, R., Santalla, A., Coll-Cantí, J., Pintos-Morell, G., Pinós, T., Arenas, J., Martín, M.A., Lucia, A., 2016. Genes and exercise intolerance: insights from McArdle disease. Physiol. Genomics 48 (2), 93–100.
 Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S., 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 (5), 861–872.