
# Citometría pluripotencia ESi063-A Marcador TRA1-60 (ISOTYPO como control negativo)



|         | Fibroblasts | ARSFiPS4F1-<br>Clon 1 | ARSFiPS4F1-<br>Clon 10 |
|---------|-------------|-----------------------|------------------------|
| D19S572 | 119/129     | 119/129               | 119/129                |
| D2S159  | 174/178     | 174/178               | 174/178                |
| D14S972 | 199/199     | 199/199               | 199/199                |
| D8S601  | 223/225     | 223/225               | 223/225                |
| D9S1853 | 252/252     | 252/252               | 252/252                |

|         | HDF11  | ARS-    |
|---------|--------|---------|
|         | FIBROS | FiPS4F1 |
| AMEL    | X, Y   | X, Y    |
| CSF1PO  | 11, 13 | 11, 13  |
| D13S317 | 11, 12 | 11, 12  |
| D16S539 | 11, 13 | 11, 13  |
| D21S11  | 28, 29 | 28, 29  |
| D5S818  | 11     | 11      |
| D7S820  | 10, 12 | 10, 12  |
| TH01    | 6, 7   | 6, 7    |
| TPOX    | 8, 11  | 8, 11   |
| vWA     | 17, 19 | 17, 19  |



ELSEVIER

Contents lists available at ScienceDirect

# Stem Cell Research

journal homepage: www.elsevier.com/locate/scr



Lab Resource: Stem Cell Line

# Generation of a human iPSC line from a patient with autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) caused by mutation in SACSIN gene



Autosomal recessive spastic ataxia of

Candela Machuca Arellano<sup>a,1</sup>, Angel Vilches<sup>a,1</sup>, Eleonora Clemente<sup>a</sup>, Samuel Ignacio Pascual-Pascual<sup>e</sup>, Arantxa Bolinches-Amorós<sup>b</sup>, Ana Artero Castro<sup>b</sup>, Carmen Espinos<sup>c</sup>, Marian Leon Rodriguez<sup>b</sup>, Pavla Jendelova<sup>d</sup>, Slaven Erceg<sup>a,b,d,\*</sup>

#### ABSTRACT

Resource table.

The human iPSC cell line, ARS-FiPS4F1 (ESi063-A), derived from dermal fibroblast from the patient autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) caused by mutations on the gene *SACSIN*, was generated by non-integrative reprogramming technology using OCT3/4, SOX2, CMYC and KLF4 reprogramming factors. The pluripotency was assessed by immunocytochemistry and RT-PCR. Differentiation capacity was verified *in vitro*. This iPSC line can be further differentiated toward affected cells to better understand molecular mechanisms of disease and pathophysiology.

Associated disease

|                        |                                          |                        | Charlevoix-Saguenay (ARSACS)                             |
|------------------------|------------------------------------------|------------------------|----------------------------------------------------------|
| Unique stem cell line  | ESi063-A                                 | Gene/locus             | Gene: SACSIN gene (SACS)                                 |
| identifier             | E51005-A                                 |                        | Locus: 13q12.12<br>Mutations: c.9938delC (p.G3313Qfs*11) |
| Alternative name(s) of | ARS-FiPS4F1                              |                        | and c.11374C $>$ T (p.R3792*) mutation in                |
| stem cell line         |                                          |                        | compound heterozygosity                                  |
| Institution            | Research Center Principe Felipe, Eduardo | Method of              | n/a                                                      |
|                        | Primo Yufera 3, Valencia, Spain          | modification           |                                                          |
| Contact information of | Slaven Erceg, serceg@cipf.es             | Name of transgene or   | n/a                                                      |
| distributor            |                                          | resistance             |                                                          |
| Type of cell line      | iPSC                                     | Inducible/constitutive | n/a                                                      |
| Origin                 | Human                                    | system                 |                                                          |
| Additional origin info | Sex: male Age: 14                        | Date archived/stock    | n/a                                                      |
| Cell Source            | Dermal fibroblasts                       | date                   |                                                          |
| Clonality              | Clonal                                   | Cell line repository/  | http://www.isciii.es/ISCIII/es/contenidos/               |
| Method of              | Sendai virus                             | bank                   | fd-el-instituto/fd-organizacion/fd-                      |
| reprogramming          |                                          |                        | estructura-directiva/fd-subdireccion-                    |
| Genetic Modification   | No                                       |                        | general-investigacion-terapia-celular-                   |
| Type of Modification   | n/a                                      |                        | medicina-regenerativa/fd-centros-                        |

<sup>\*</sup> Corresponding author at: Stem Cells Therapies in Neurodegenerative Diseases Lab, Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain. E-mail address: serceg@cipf.es (S. Erceg).

<sup>&</sup>lt;sup>a</sup> Stem Cells Therapies in Neurodegenerative Diseases Lab, Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain

b National Stem Cell Bank-Valencia Node, Biomolecular and Bioinformatics Resources Platform PRB2, ISCIII, Research Centre Principe Felipe, c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain

<sup>&</sup>lt;sup>c</sup> Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Service of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.

d Institute of Experimental Medicine, Department of Tissue Cultures and Stem Cells, Academy of Science of the Czech Republic, Prague, Czech Republic

e Servicio de Neuropediatría, Hospital Universitario La Paz, Madrid, Spain.

<sup>&</sup>lt;sup>1</sup> Equal contribution

C.M. Arellano et al. Stem Cell Research 31 (2018) 249-252

celulares/fd-lineas-celulares-disponibles/ lineas-de-celulas-iPS.shtml

Ethical approval

Ethics Review Board-competent authority
approval obtained by the Valencian
Authority for Stem Cell Research (Approval

unidades/fd-banco-nacional-lineas-

number: S:177-15)

## Resource utility

The generation of human induced pluripotent stem cells (hiPSC) from the ARSACS patients permits the development of disease specific stem cells that can be further differentiated toward affected cells to better understand molecular mechanisms of disease and pathophysiology.

#### Resource details

Skin punch biopsy was taken from a 14- year-old patient who was diagnosed with autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) harbouring the c.9938delC (p.G3313Qfs\*11) and c.11374C > T (p.R3792\*) mutations in compound heterocigosis in the SACS gene (NM\_014363.5) and primary fibroblast cell line was established. The generation of the human induced pluripotent stem cell (hiPSC) line, ARS-FiPS4F1 (registered as ESi063-A at www.hPSCreg. com), was carried out using non-integrative Sendai virus containing the human reprogramming factors, Oct3/4, Sox2, C-Myc, and Klf4 (Takahashi et al., 2007), following instructions by manufacturer. After 30 days generated colonies displayed a typical ES-like morphology (polygonal shape; refractive edges, high nuclear/cytoplasmic ratio) and growth behaviour. DNA sequencing analysis of ARS-FiPS4F1 confirmed the SACS mutations in each allele (Fig. 1A). The clearance of the virus and the exogenous reprogramming factor genes were confirmed by RT-PCR after twelve cell culture passages (Fig. 1B). The genetic fingerprinting was performed with ARS-FiPS4F1 hiPSC line and proved its genetic identity to parental fibroblasts (available with the author). The selected line showed normal karyotype (46, XY) at low passages (passage 9) (Fig. 1C) and medium passage number (passage 30). Genetic and functional assays were performed to determine the quality of the ARS-FiPS4F1 line. Pluripotency was assessed by immunocytochemistry to pluripotency markers OCT-4, SOX2, NANOG and SSEA-4 and flow cytometry for SSEA-4 pluripotency marker (Fig. 1D). The alkaline phosphatase is known to be more active in hiPSCs and the colorimetric assay depicting its activity confirmed that the selected hiPSC colonies are indeed pluripotent (Fig. 1D). The expression of endogenous plutipotency genes was detected by RT-PCR (Fig. 1E). To test the ability of the hiPSC line to generate derivates of three germ layers in vitro, the hiPSCs were differentiated into the three germ layers using an embryoid body based assay. Spontaneous differentiated cells were immunostained for differentiation markers such as TUJ1 for ectoderm, SMA for mesoderm and positive FOXA2 for endoderm (Fig. 1F). The mycoplasma was regularly checked without positive results.

#### Materials and methods

# Reprogramming patient's fibroblasts

The hiPSCs were derived from patient's fibroblasts using Sendai virus (Cyto Tune- iPS 2.0 reprogramming Kit, Life Technologies) according to manufacturer instructions. hiPSCs were grown on irradiated (45Gy) human foreskin fibroblasts (ATCC CRL 2429) in hiPSCs medium containing KO DMEM, KSR 20%, Glutamax 2 mM, non-essential amino acids 0.1 mM,  $\beta$ -mercaptoethanol 0.23 mM, basic FGF 10 ng/mL, penicillin/streptomycin. Cells were mechanically passaged every 6–8 days.

## In vitro differentiation assay

For *in vitro* differentiation assay the colonies from a fully confluent 6-well plate were cut mechanically and cultured in suspension to form embryoid bodies in hiPSCs media without bGFG. After 7 days in suspension, embryoid bodies were transferred into 0.1% gelatin-coated plates and cultured for additional 7–10 days to allow spontaneous differentiation. Then, the cells were fixed and immunostained to detect cells from the three germ layers.

# Karyotype analysis

The hiPSCs were adapted to feeder-free cell culture on Matrigel (BD, #354277) coated plates using mTeSR1 medium. Passages were performed using Dispase (STEMCELL Technologies, #07913), every 5–7 days. The karyotype was analyzed by G-banding at 400–550 band resolution, 30 metaphases analyzed (Service of Biobanco de Sistema Sanitario Público, Granada, Spain).

# Fingerprinting

gDNA from fibroblasts and hiPSCs was extracted using QIAamp DNA Blood mini kit (Qiagen, Hilden, Germany) in the presence of RNAse (Roche). Fingerprinting analyses was performed using 5 microsatellite markers (D198572, D2S159, D148972, D8S601, D9S1853) and analyzed on Abi PRISM 3130 using GeneMapper (Thermo Fisher) by Biobanco de Sistema Sanitario Público, Granada, Spain.

#### Mutation screening

Genomic DNA from fibroblasts and hiPSCs was isolated using the QIAamp DNA Blood mini kit (Qiagen, Hilden, Germany). To detect the SACS c.9938delC variant, the used primers were: Forward: 5′- GCAGA ACATCTCCTTCAGGA -3′, and Reverse: 5′- CCGCTATGTAAGCATTGG AAA-3′, and to investigate the SACS c.11374C > T change, the used primers were: Forward: 5′-TGTTAACCTGGATCCTCCTC -3′, and Reverse: 5′- GAACAACTGGTGAAATGTGC -3′.

# Detection of pluripotency markers by RT-PCR

Total RNA was isolated with the RNeasy Mini Kit (Qiagen, Hilden, Germany), and treated with DNase I to remove any genomic DNA contamination. QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) was used to carry out cDNA synthesis from 1  $\mu g$  of total RNA according to the manufacturer's instructions. The PCR reaction was performed with MyTaq DNA Polymerase (Bioline GmbH, Germany) using Applied Biosystems Veriti Thermal Cycler. The expression level of pluripotency markers was analyzed using the primers described in Table 2. Fibroblasts and hESC H9 (WiCell) were used as negative and positive control, respectively.

#### *Immunocytochemistry*

Cells were washed in PBS and fixed in 4% PFA for 15 min at room temperature (RT). Fixed cells were washed twice in PBS and placed in blocking solution (3% serum, 0.5% Triton-X100 in PBS) for 1 h at RT. Cells were then incubated overnight at 4 °C with primary antibodies. The following day, cells were washed three times in PBS and incubated with an appropriate secondary antibody at RT for 1 h. Thereafter, cells were stained with DAPI (1:1000) at RT during 5 min, washed three times in PBS and visualized on Leica DM600 fluorescent microscope equipped with Leica DC500 camera. Samples grown on coverslips were mounted using Vectashield.

C.M. Arellano et al. Stem Cell Research 31 (2018) 249-252

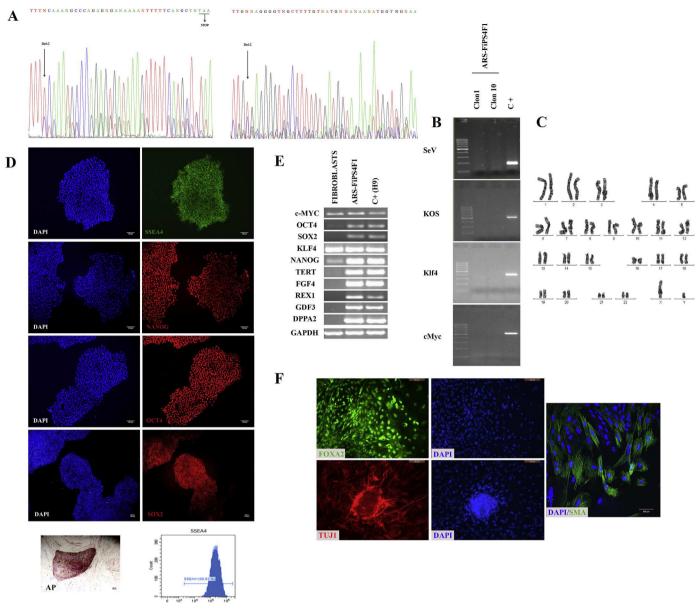



Fig. 1. Characterization of ARS-FiPS4F1 line.

Table 1 Characterization and validation.

| Classification                       | Test                                      | Result                                                                                                             | Data                          |
|--------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Morphology                           | Photography                               | Normal                                                                                                             | Shown by immunocytochemistry  |
| Phenotype                            | Immunocytochemisty                        | Positive staining/expression of pluripotency markers: Oct4, Nanog, Sox2, SSEA4                                     | Fig. 1 panel D                |
|                                      | Cytometry                                 | SSEA4 99%                                                                                                          | Fig. 1 panel D                |
| Genotype                             | Karyotype (G-banding) and resolution      | 46XY,<br>Resolution 450–500                                                                                        | Fig. 1 panel C                |
| Identity                             | Microsatellite PCR (mPCR)<br>STR analysis | N/A<br>10 loci analyzed, all matching                                                                              | N/A<br>Available with authors |
| Mutation analysis (IF<br>APPLICABLE) | Sequencing<br>Southern Blot OR WGS        | Compound heterozygous<br>N/A                                                                                       | Fig. 1 panel A<br>N/A         |
| Microbiology and virology            | Mycoplasma                                | Mycoplasma testing by luminescence. Negative                                                                       | Supplementary Fig.1           |
| Differentiation potential            | Embryoid body formation                   | Positive TUJ1 and TUBB ectodermal staining, positive SMA mesodermal staining and positive AFP endodermal staining. | Fig. 1 panel F                |
| Donor screening (OPTIONAL)           | N/A                                       | N/A                                                                                                                | N/A                           |
| Genotype additional info             | N/A                                       | N/A                                                                                                                | N/A                           |
| (OPTIONAL)                           | N/A                                       | N/A                                                                                                                | N/A                           |

C.M. Arellano et al. Stem Cell Research 31 (2018) 249-252

Table 2
Reagents details.

| eagents details.                  |                            |          |                                      |
|-----------------------------------|----------------------------|----------|--------------------------------------|
| Antibodies used for immunocytoche | emistry/flow-cytometry     |          |                                      |
|                                   | Antibody                   | Dilution | Company Cat # and RRID               |
| Pluripotency Markers              | Rabbit anti-Nanog          | 1:400    | Cell Signaling Technology Cat# D73G4 |
| Pluripotency Markers              | Rabbit anti-Oct4           | 1:400    | Cell Signaling Technology Cat# C30A3 |
| Pluripotency Markers              | Rabbit anti-Sox2           | 1:400    | Cell Signaling Technology Cat# D6D9  |
| Pluripotency Markers              | Rabbit anti-SSEA4          | 1:100    | BD Pharmigen Cat# 560073             |
| Pluripotency Markers              | Mouse anti human SSEA4-PE  | 1:800    | STEMCELL Technologies Cat #60062PE   |
| Differentiation Markers           | Mouse anti-SMA             | 1:200    | Abcam Cat# ab11570                   |
| Differentiation Markers           | Mouse anti-FoxA2           | 1:100    | R&D Cat# AF2400                      |
| Differentiation Markers           | Mouse anti-BTubulin (Tuj1) | 1:500    | Neuromics Cat# MO15013               |
| Primers                           |                            |          |                                      |
|                                   | Target                     |          | Forward/Reverse primer (5'-3')       |
| Pluripotency Markers (qPCR)       | OCT4                       |          | AAGCCCTCATTTCACCAGG                  |
|                                   |                            |          | CTTGGAAGCTTAGCCAGGTC                 |
| Pluripotency Markers (qPCR)       | NANOG                      |          | CCAAATTCTCCTGCCAGTGAC                |
|                                   |                            |          | CACGTGGTTTCCAAACAAGAAA               |
| Pluripotency Markers (qPCR)       | SOX2                       |          | TCACATGTCCCAGCACTACC                 |
|                                   |                            |          | CCCATTTCCCTCGTTTTTCT                 |
| Pluripotency Markers (qPCR)       | TERT                       |          | TGGCTGCGTGGTGAACTTG                  |
|                                   |                            |          | GCGGTTGAAGGTGAGACTGG                 |
| Pluripotency Markers (qPCR)       | FGF4                       |          | CTACAACGCCTACGAGTCCTACA              |
|                                   |                            |          |                                      |
| Pluripotency Markers (qPCR)       | REX1                       |          | CAGATCCTAAACAGCTCGCAGAAT             |
|                                   |                            |          | GCGTACGCAAATTAAAGTCCAGA              |
| Pluripotency Markers (qPCR)       | GDF3 CTTATGCTACGT          |          | CTTATGCTACGTAAAGGAGCTGGG             |
|                                   |                            |          | GTGCCAACCCAGGTCCCGGAAGTT             |
| Pluripotency Markers (qPCR)       | DPPA2                      |          | CCGTCCCCGCAATCTCCTTCCATC             |
| 1 2                               |                            |          | ATGATGCCAACATGGCTCCCGGTG             |
| House-keeping gene (qPCR)         | GAPDH                      |          | ATCGTGGAAGGACTCATGACCACA             |
| 1 00 11                           |                            |          | CCCTGTTGCTGTAGCCAAATTCGT             |
| endai virus detection SeV         |                            |          | GGATCACTAGGTGATATCGAGC               |
|                                   |                            |          | ACCAGACAAGAGTTTAAGAGATATGTAT         |
| Transgenes detection              | KOS                        |          | ATGCACCGCTACGACGTGAGCGC              |
| <b>5</b>                          |                            |          | ACCTTGACAATCCTGATGTGG                |
| Transgenes detection              | c-Myc                      |          | TAACTGACTAGCAGGCTTGTCG               |
|                                   | 2 Myc                      |          | TCCACATACAGTCCTGGATGATGATG           |
| Transgenes detection              | Klf4                       |          | TTCCTGCATGCCAGAGGAGCCC               |
| Transperies detection             | KII4                       |          |                                      |

## Flow cytometry

hiPSCs were dissociated using Accutase (Innovative Cell Technologies) for 2–4 min at RT, centrifuged at 300 rcf for 5 min and resuspended in PBS + 2% FBS. Anti-human SSEA-4 antibody was added and incubated for 20 min at RT. IgG3, kappa isotype (STEMCELL technologies # 60073PE.1) was used as negative control. The cells were analyzed using a CytoFLEX flow cytometer (Beckman Coulter) and data analyzed by CytExpert 2.0 software (Table 1).

## Alkaline phosphatase staining

Alkaline phosphatase staining was carried out using Alkaline Phosphatase Staining Kit II (Stemgent, Cambridge, MA, USA) according to manufacturer's instructions.

#### Mycoplasma detection

The presence of mycoplasma was tested regularly measuring enzyme activity via luciferase (MycoAlert $^{\text{\tiny TM}}$  PLUS Mycoplasma Detection Kit, Lonza).

### hiPSC nomenclature

The generated hiPSC line was named following Spanish National

Stem Cell Bank recommendations. The line is registered on https://hpscreg.eu/ as ESi043-A line.

AATGTATCGAAGGTGCTCAA

#### **Funding**

This work was supported Funds for research from the "Miguel Servet" contract of Institute of Health Carlos III of Spanish Ministry of Science and Innovation (CP10/00579) to S.E. Fund for Health of Spain PI14-02209 (SE), Platform of Biomolecular and Bioinformatics Resources of the Institute of Health Carlos III PT13/0001/0042 by GACR P304/12/G069 and by the project "Centre of Reconstructive Neuroscience", registration number CZ.02.1.01/0.0./0.0/15\_003/0000419.

# Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2018.07.012.

#### References

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S., 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.

| Mycoplasma test by MycoAlert PLUS <sup>™</sup> 30/09/2017 |               |  |
|-----------------------------------------------------------|---------------|--|
| Sample                                                    | Read B/Read A |  |
| Positive control                                          | 3,537         |  |
| Negative control                                          | 0,347         |  |
| ARS-FiPS4F1                                               | 0,582         |  |